
Weighted Graphs (Γράφοι με
Βάρη)

Manolis Koubarakis

Data Structures and Programming
Techniques

1

Weighted Graphs

• Weighted graphs are directed or undirected
graphs in which numbers called weights are
attached to the edges.

• Example: Let the vertices of a graph represent
cities on a map. The weight on an edge
connecting city A to city B can be the travel
distance from A to B, the cost of an airline ticket
to go from A to B, or the time required to travel
from A to B.

Data Structures and Programming
Techniques

2

Representations of Weighted Graphs

• To represent a weighted graph 𝐺, we can use
an adjacency matrix 𝑇 in which:
– 𝑇 𝑖, 𝑗 = 𝑤𝑖𝑗 if there exists an edge 𝑒 = (𝑣𝑖 , 𝑣𝑗) of

weight 𝑤𝑖𝑗 .

– 𝑇 𝑖, 𝑖 = 0

– 𝑇 𝑖, 𝑗 = ∞ if there is no edge from 𝑣𝑖 to 𝑣𝑗 .

• We will assume that all weights 𝑤𝑖𝑗 are non-negative
numbers.

Data Structures and Programming
Techniques

3

Example Weighted Directed Graph

Data Structures and Programming
Techniques

4

2

1

6
5

4

3

10

3

7

5

6

7

2

8
1

5

Adjacency Matrix for the Example
Graph

1 2 3 4 5 6

1 0 3 ∞ ∞ ∞ 5

2 ∞ 0 7 ∞ ∞ 10

3 ∞ ∞ 0 5 1 ∞

4 ∞ ∞ ∞ 0 6 ∞

5 ∞ ∞ ∞ ∞ 0 7

6 ∞ ∞ 8 2 ∞ 0

Data Structures and Programming
Techniques

5

Representations of Weighted Graphs
(cont’d)

• We can easily extend the adjacency list
representation to be used for weighted graphs
too.

• If (𝑣𝑖 , 𝑣𝑗) is an edge in the graph with weight

𝑤𝑖𝑗 then the adjacency list of 𝑣𝑖 will contain

the pair (𝑣𝑗 , 𝑤𝑖𝑗).

Data Structures and Programming
Techniques

6

Example Weighted Directed Graph

Data Structures and Programming
Techniques

7

2

1

6
5

4

3

10

3

7

5

6

7

2

8
1

5

Adjacency List Representation for the
Example Graph

Vertices Adjacency List

1 (2,3) (6,5)

2 (3,7) (6,10)

3 (4,5) (5,1)

4 (5,6)

5 (6,7)

6 (3,8) (4,2)

Data Structures and Programming
Techniques

8

Directed Weighted Graphs

• We will consider only directed weighted
graphs in this lecture.

Data Structures and Programming
Techniques

9

Shortest Paths (Συντομότερα
Μονοπάτια)

• The length (or weight) of a path 𝑝 is the sum of
the weights of the edges of 𝑝.

• A very interesting problem in a directed weighted
graph is to find the shortest path from a vertex 𝑠
to a vertex 𝑡.

• A shortest path (συντομότερο μονοπάτι)
between two vertices 𝑠 and 𝑡 in a weighted
directed graph is a directed simple path from 𝑠 to
𝑡 with the property that no other path has a
lower length.

Data Structures and Programming
Techniques

10

The Shortest Path from Vertex 1 to
Vertex 5

Data Structures and Programming
Techniques

11

2

1

6
5

4

3

10

3

7

5

6

7

2

8
1

5

The Single Source Shortest Paths
Problem

• Let 𝐺 = (𝑉, 𝐸) be a weighted directed graph
in which each edge has a non-negative weight,
and one vertex is specified as the source
(αφετηρία).

• The single source shortest paths problem (το
πρόβλημα των συντομότερων μονοπατιών
κοινής αφετηρίας) is to determine the length
of the shortest path from the source to each
vertex in 𝑉.

Data Structures and Programming
Techniques

12

Greedy Algorithms

• Algorithms for optimization problems (προβλήματα
βελτιστοποίησης) typically go through a sequence of
steps, with a set of choices at each step.

• The single source shortest path problem presented
earlier is an optimization problem.

• A greedy (άπληστος) algorithm always makes the
choice that looks best at the moment. That is, it makes
a locally optimal choice in the hope that this choice will
lead to a globally optimal solution.

• Greedy algorithms do not always yield optimal
solutions, but for many problems they do.

Data Structures and Programming
Techniques

13

Dijkstra’s Greedy Algorithm for the
Single Source Shortest Paths Problem
• Let 𝐺 = (𝑉, 𝐸) our graph.
• We start with a vertex set 𝑊 = {𝑠}
 containing only the source.
• We will progressively enlarge 𝑊 by adding one

new vertex at a time, until 𝑊 includes all vertices
of 𝑉.

• The vertex we add at each stage is the vertex 𝑤 in
𝑉 − 𝑊, which is at a minimum distance from the
source among all vertices in 𝑉 − 𝑊 that have not
been added to 𝑊 (this is a greedy choice).

Data Structures and Programming
Techniques

14

Dijkstra’s Algorithm (cont’d)

• We keep track of the minimum distance from the
source 𝒔 at each stage by using an array
𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑢 = Δ 𝑢 which keeps track
of the shortest distance from 𝑠 to each vertex 𝑢
in 𝑊.

• The same array also keeps track of the shortest
distance from 𝒔 to each vertex 𝒖 in 𝑽 − 𝑾 using
a path 𝑝 starting at 𝑠, such that all vertices of
path 𝑝 lie in 𝑊, except the last vertex 𝑢 which lies
outside 𝑊.

Data Structures and Programming
Techniques

15

Dijkstra’s Algorithm (cont’d)

• Every time we add a new vertex 𝑤 to 𝑊, we
update the array 𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑢 for all 𝑢
in 𝑉 − 𝑊.

• This distance is updated in case it is currently
bigger than the length of the path from the
source to 𝑢 going through 𝑤 which is
𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑤 + 𝑇[𝑤, 𝑢]. This operation
is called edge relaxation (χαλάρωση ακμής) for
the edge (𝑤, 𝑢).

• The term relaxation is historical. In fact, what we
do here is “tightening”.

Data Structures and Programming
Techniques

16

Example Graph

• We will show how Dijkstra’s algorithm works on
this graph with source vertex 1.

Data Structures and Programming
Techniques

17

2

1

6
5

4

3

10

3

7

5

6

7

2

8
1

5

Expanding the Vertex Set W in Stages

Stage W V-W w Δ(w) Δ(1) Δ(2) Δ(3) Δ(4) Δ(5) Δ(6)

Start {1} {2,3,4,5,6} - - 0 3 ∞ ∞ ∞ 5

Data Structures and Programming
Techniques

18

2

1

6
5

4

3

10

3

7

5

6

7

2

8
1

5

Expanding the Vertex Set W in Stages
(cont’d)

Stage W V-W w Δ(w) Δ(1) Δ(2) Δ(3) Δ(4) Δ(5) Δ(6)

Start {1} {2,3,4,5,6} - - 0 3 ∞ ∞ ∞ 5

Data Structures and Programming
Techniques

19

w=2 is chosen for the second stage.

2

1

6
5

4

3

10

3

7

5

6

7

2

8
1

5

Expanding the Vertex Set W in Stages
(cont’d)

Stage W V-W w Δ(w) Δ(1) Δ(2) Δ(3) Δ(4) Δ(5) Δ(6)

Start {1} {2,3,4,5,6} - - 0 3 ∞ ∞ ∞ 5

2 {1,2} {3,4,5,6} 2 3 0 3 10 ∞ ∞ 5

Data Structures and Programming
Techniques

20

2

1

6
5

4

3

10

3

7

5

6

7

2

8
1

5

Expanding the Vertex Set W in Stages
(cont’d)

Stage W V-W w Δ(w) Δ(1) Δ(2) Δ(3) Δ(4) Δ(5) Δ(6)

Start {1} {2,3,4,5,6} - - 0 3 ∞ ∞ ∞ 5

2 {1,2} {3,4,5,6} 2 3 0 3 10 ∞ ∞ 5

Data Structures and Programming
Techniques

21

w=6 is chosen for the third stage.

2

1

6
5

4

3

10

3

7

5

6

7

2

8
1

5

Expanding the Vertex Set W in Stages
(cont’d)

Stage W V-W w Δ(w) Δ(1) Δ(2) Δ(3) Δ(4) Δ(5) Δ(6)

Start {1} {2,3,4,5,6} - - 0 3 ∞ ∞ ∞ 5

2 {1,2} {3,4,5,6} 2 3 0 3 10 ∞ ∞ 5

3 {1,2,6} {3,4,5} 6 5 0 3 10 7 ∞ 5

Data Structures and Programming
Techniques

22

2

1

6
5

4

3

10

3

7

5

6

7

2

8
1

5

Expanding the Vertex Set W in Stages
(cont’d)

Stage W V-W w Δ(w) Δ(1) Δ(2) Δ(3) Δ(4) Δ(5) Δ(6)

Start {1} {2,3,4,5,6} - - 0 3 ∞ ∞ ∞ 5

2 {1,2} {3,4,5,6} 2 3 0 3 10 ∞ ∞ 5

3 {1,2,6} {3,4,5} 6 5 0 3 10 7 ∞ 5

Data Structures and Programming
Techniques

23

w=4 is chosen for the fourth stage.

2

1

6
5

4

3

10

3

7

5

6

7

2

8
1

5

Expanding the Vertex Set W in Stages
(cont’d)

Stage W V-W w Δ(w) Δ(1) Δ(2) Δ(3) Δ(4) Δ(5) Δ(6)

Start {1} {2,3,4,5,6} - - 0 3 ∞ ∞ ∞ 5

2 {1,2} {3,4,5,6} 2 3 0 3 10 ∞ ∞ 5

3 {1,2,6} {3,4,5} 6 5 0 3 10 7 ∞ 5

4 {1,2,6,4} {3,5} 4 7 0 3 10 7 13 5

Data Structures and Programming
Techniques

24

2

1

6
5

4

3

10

3

7

5

6

7

2

8
1

5

Expanding the Vertex Set W in Stages
(cont’d)

Stage W V-W w Δ(w) Δ(1) Δ(2) Δ(3) Δ(4) Δ(5) Δ(6)

Start {1} {2,3,4,5,6} - - 0 3 ∞ ∞ ∞ 5

2 {1,2} {3,4,5,6} 2 3 0 3 10 ∞ ∞ 5

3 {1,2,6} {3,4,5} 6 5 0 3 10 7 ∞ 5

4 {1,2,6,4} {3,5} 4 7 0 3 10 7 13 5

Data Structures and Programming
Techniques

25

w=3 is chosen for the fifth stage.

2

1

6
5

4

3

10

3

7

5

6

7

2

8
1

5

Expanding the Vertex Set W in Stages
(cont’d)

Stage W V-W w Δ(w) Δ(1) Δ(2) Δ(3) Δ(4) Δ(5) Δ(6)

Start {1} {2,3,4,5,6} - - 0 3 ∞ ∞ ∞ 5

2 {1,2} {3,4,5,6} 2 3 0 3 10 ∞ ∞ 5

3 {1,2,6} {3,4,5} 6 5 0 3 10 7 ∞ 5

4 {1,2,6,4} {3,5} 4 7 0 3 10 7 13 5

5 {1,2,6,4,3} {5} 3 10 0 3 10 7 11 5

Data Structures and Programming
Techniques

26

2

1

6
5

4

3

10

3

7

5

6

7

2

8
1

5

Expanding the Vertex Set W in Stages
(cont’d)

Stage W V-W w Δ(w) Δ(1) Δ(2) Δ(3) Δ(4) Δ(5) Δ(6)

Start {1} {2,3,4,5,6} - - 0 3 ∞ ∞ ∞ 5

2 {1,2} {3,4,5,6} 2 3 0 3 10 ∞ ∞ 5

3 {1,2,6} {3,4,5} 6 5 0 3 10 7 ∞ 5

4 {1,2,6,4} {3,5} 4 7 0 3 10 7 13 5

5 {1,2,6,4,3} {5} 3 10 0 3 10 7 11 5

Data Structures and Programming
Techniques

27

w=5 is chosen for the sixth stage.

2

1

6
5

4

3

10

3

7

5

6

7

2

8
1

5

Expanding the Vertex Set W in Stages
(cont’d)

Stage W V-W w Δ(w) Δ(1) Δ(2) Δ(3) Δ(4) Δ(5) Δ(6)

Start {1} {2,3,4,5,6} - - 0 3 ∞ ∞ ∞ 5

2 {1,2} {3,4,5,6} 2 3 0 3 10 ∞ ∞ 5

3 {1,2,6} {3,4,5} 6 5 0 3 10 7 ∞ 5

4 {1,2,6,4} {3,5} 4 7 0 3 10 7 13 5

5 {1,2,6,4,3} {5} 3 10 0 3 10 7 11 5

6 {1,2,6,4,3,5} {} 5 11 0 3 10 7 11 5

Data Structures and Programming
Techniques

28

2

1

6
5

4

3

10

3

7

5

6

7

2

8
1

5

Dijkstra’s Algorithm in Pseudocode

void ShortestPath(void)

{

 Let T be the adjacency matrix of graph G.

 Let MinDistance be a variable that takes edge

 weights as values.

 Let Minimum(x,y) be a function whose value is the lesser

 of x and y.

 /* Let s in V be the source vertex at which the

 shortest paths starts. */

 /* Initialize W and ShortestDistance[u] as follows: */

 W={s};

 ShortestDistance[s]=0;

 for (each u in V-{s}) ShortestDistance[u]=T[s][u];

Data Structures and Programming
Techniques

29

Dijkstra’s Algorithm (cont’d)

/*Now repeatedly enlarge W until W includes all vertices in V */

 while (W!=V){

 /* find the vertex w in V-W at the minimum distance from s */

 MinDistance=∞;
 for (each v in V-W){

 if (ShortestDistance[v] < MinDistance){

 MinDistance=ShortestDistance[v];

 w=v;

 }

 }

 /* add w to W */

 W=W ∪ {w};

 /* relaxation step: update the shortest distance to vertices in V-W */

 for (each u in V-W){

 ShortestDistance[u]=Minimum(ShortestDistance[u],

 ShortestDistance[w]+T[w][u]);

 }

 }

}

Data Structures and Programming
Techniques

30

Proof of Correctness for Dijkstra’s
Algorithm

• We will first prove that at each stage of the
algorithm, when 𝑤 is selected,
𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒[𝑤] gives us the length of
the shortest path from the source to 𝑤.

Data Structures and Programming
Techniques

31

Proof (cont’d)

• Let us assume that this is not the case i.e.,
𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒[𝑤] is not the length of the
shortest path from 𝑠 to 𝑤.

• Then, there must exist some shorter path 𝑝,
which starts at 𝑠 and contains a vertex in 𝑉 − 𝑊
other than 𝑤.

• We can start at the source 𝑠 and proceed along
path 𝑝, passing through vertices in 𝑊, until we
come to the first vertex 𝑟, that is not in 𝑊 as the
next figure shows.

Data Structures and Programming
Techniques

32

Hypothetical Shorter Path to 𝑤

Data Structures and Programming
Techniques

33

𝑤

𝑟

𝑠

𝑊

Proof (cont’d)

• Now notice that the length of the initial portion of the path 𝑝 from
𝑠 to 𝑟 is shorter than the length of the entire path 𝑝 from 𝑠 to 𝑤.

• Since we assumed that the length of path 𝑝 was shorter than
𝑆ℎ𝑜𝑟𝑡𝑒𝑟𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒[𝑤], the length of the path from 𝑠 to 𝑟 is shorter
than 𝑆ℎ𝑜𝑟𝑡𝑒𝑟𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑤 also.

• Moreover, the path from 𝑠 to 𝑟 has all its vertices except for 𝑟 lying
in 𝑊.

• Thus we would have 𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑟 <
𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑤 when 𝑤 was chosen as the next vertex to
add to 𝑊.

• But this contradicts the choice of 𝑤 and would have meant that we
would have chosen 𝑟 instead.

• Since we reached a contradiction, 𝑆ℎ𝑜𝑟𝑡𝑒𝑟𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑤 is the
length of the shortest path from 𝑠 to 𝑤.

Data Structures and Programming
Techniques

34

Proof (cont’d)

• We will now prove that, at each stage, after 𝑊
is enlarged by the addition of 𝑤 and shortest
distances updated, 𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒[𝑢]
gives the distance of the shortest path from 𝑠
to every vertex 𝑢 in 𝑉 − 𝑊 via intermediaries
lying wholly in 𝑊.

Data Structures and Programming
Techniques

35

Proof (cont’d)

• Observe that when we add a new vertex 𝑤 to 𝑊, we
adjust the shortest distances to take into account of
the possibility that there is now a shorter path to 𝑢
going through 𝑤.

• If that path goes through the old 𝑊 to 𝑤 and then
immediately to 𝑢, its length will be compared with
𝑆ℎ𝑜𝑟𝑡𝑒𝑟𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑢 and 𝑆ℎ𝑜𝑟𝑡𝑒𝑟𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑢 will be
reduced if the new path is shorter.

• The only other possibility for a shorter path is shown
on the next slide where the path travels to 𝑤, then
back into the old 𝑊, to some member 𝑥 of the old 𝑊,
then to 𝑢.

Data Structures and Programming
Techniques

36

Impossible Shortest Path

Data Structures and Programming
Techniques

37

𝑢

𝑤

𝑠Old 𝑊

𝑥

Proof (cont’d)

• But there really cannot be such a path. Since 𝑥 was
placed in 𝑊 before 𝑤, the shortest of all paths from
the source to 𝑥 runs through the old 𝑊 alone.

• Therefore, the path to 𝑥 through 𝑤 shown on the
figure is no shorter than the path directly to 𝑥 through
𝑊.

• As a result, the length of the path from the source to
𝑤, 𝑥 and 𝑢 is no less from the old value of
𝑆ℎ𝑜𝑟𝑡𝑒𝑟𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑢 .

• Thus, 𝑆ℎ𝑜𝑟𝑡𝑒𝑟𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑢 cannot be reduced by the
algorithm due to a path through 𝑤 and 𝑥, and we need
not consider the length of such paths.

Data Structures and Programming
Techniques

38

Time Complexity

• If we use an adjacency matrix to represent the
digraph, Dijkstra’s algorithm runs in 𝑶(𝒏𝟐) time
where 𝑛 is the number of vertices of the graph.

• The initialization stage runs through 𝑛 − 1
vertices and takes time 𝑂 𝑛 .

• The while-loop runs through the 𝑛 − 1 vertices of
𝑉 − {𝑠} one at a time, and for each such vertex,
the selection of the new vertex at minimum
distance, as well as the updating of the distances
takes time proportional to the number of vertices
in 𝑉 − 𝑊. Therefore, the loop takes 𝑂(𝑛2) time.

Data Structures and Programming
Techniques

39

Time Complexity (cont’d)

• If the number of edges in the graph 𝒆 is much less than
𝒏𝟐 e.g. 𝑶 𝒏 (i.e., the graph is sparse) it is better to
use the adjacency list representation of the graph and
a priority queue to organize the vertices in 𝑉 − 𝑊
according to the values of array 𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒.

• Then, the updating of the array 𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 can
be done by going down the adjacency list of 𝑤 and
updating the distances in the priority queue. A total of
𝑒 updates will be made, each at cost 𝑂(log 𝑛) if the
priority queue is implemented as a min heap, so the
total time for updates is 𝑂(𝑒 log 𝑛).

Data Structures and Programming
Techniques

40

Time Complexity (cont’d)

• The time to initialize the priority queue is
𝑂 𝑛 .

• The time needed to select 𝑤 is 𝑂 log 𝑛 since
it involves finding and removing the minimum
element in a heap.

• Thus, the total time of the algorithm is 𝑶(𝒏 +
𝒆 log 𝒏) which is considerably better than
𝑂(𝑛2) for sparse graphs.

Data Structures and Programming
Techniques

41

The All-Pairs Shortest Path Problem

• Suppose we have a weighted digraph that gives the
flying time on certain routes containing cities, and
we wish to construct a table that gives the shortest
time required to fly from any one city to any other.

• This is an instance of the all-pairs shortest path
problem.

Data Structures and Programming
Techniques

42

The All-Pairs Shortest Path Problem
(cont’d)

• More formally, let 𝐺 = (𝑉, 𝐸) be a weighted
directed graph in which each edge (𝑣, 𝑤) has a
non-negative weight 𝐶[𝑣, 𝑤]. The all-pairs
shortest path problem is to find for each pair of
vertices 𝑣, 𝑤, the shortest path from 𝑣 to 𝑤.

• We could solve this problem by running Dijkstra’s
algorithm with each vertex in turn as a source.

• We will present a more direct way of solving the
problem due to R. W. Floyd.

Data Structures and Programming
Techniques

43

Floyd’s Algorithm

• Let us assume that vertices in 𝑉 are numbered
with 0, 1, 2, … , 𝑛 − 1. The algorithm uses an
𝑛 × 𝑛 matrix 𝐴 in which to compute the
lengths of the shortest paths.

• We initially set 𝐴 𝑖, 𝑗 = 𝐶[𝑖, 𝑗] where 𝐶 is the
adjacency matrix of 𝐺.

• As a result, if there is no edge from 𝑖 to 𝑗, we
have 𝐴 𝑖, 𝑗 = ∞.

• Also, each diagonal element of 𝐴 is 0.

Data Structures and Programming
Techniques

44

Floyd’s Algorithm (cont’d)

• The algorithm makes 𝑛 iterations over the matrix
𝐴.

• After the 𝒌-th iteration, 𝐴[𝑖, 𝑗] will have as value
the smallest length of any path from vertex 𝑖 to
vertex 𝑗 that does not pass through a vertex
numbered higher than 𝑘.

• In the 𝑘-th iteration, we use the following
formulas to compute 𝐴:

𝐴𝑘 𝑖, 𝑗 = 𝑚𝑖𝑛 ቊ
𝐴𝑘−1[𝑖, 𝑗]

𝐴𝑘−1 𝑖, 𝑘 + 𝐴𝑘−1[𝑘, 𝑗]

Data Structures and Programming
Techniques

45

The 𝑘-th Iteration Graphically

Data Structures and Programming
Techniques

46

𝑘

𝑖 𝑗

𝐴𝑘−1[𝑖, 𝑘] 𝐴𝑘−1[𝑘, 𝑗]

𝐴𝑘[𝑖, 𝑗]

Dynamic Programming

• Dynamic programming solves problems by
breaking them down into simpler, overlapping
subproblems, solving each subproblem just
once, and storing their solutions.

• The optimal solution to the main problem is
then constructed from the optimal solutions
of these subproblems.

• Floyd’s algorithm is a dynamic programming
algorithm. Why?

Data Structures and Programming
Techniques

47

Dynamic Programming (cont’d)

• Floyd-Warshall exhibits the two key characteristics of dynamic
programming.

• The first one is optimal substructure: The problem of finding the
shortest path between any pair of vertices (𝑖, 𝑗) has optimal
substructure. The Floyd algorithm leverages this by considering
increasingly larger sets of intermediate vertices allowed on the
path.

• Let us explain this.

• Let 𝑑𝑖𝑠𝑡(𝑖, 𝑗, 𝑘) be the length of the shortest path from vertex 𝑖 to
vertex 𝑗 such that all intermediate vertices on the path (vertices
other than 𝑖 and 𝑗 themselves) are from the set {1, 2, … , 𝑘}.

Data Structures and Programming
Techniques

48

Dynamic Programming (cont’d)

• The algorithm builds the solution iteratively. To
find 𝑑𝑖𝑠𝑡(𝑖, 𝑗, 𝑘), it considers two possibilities for
the shortest path from 𝑖 to 𝑗 using only
intermediate vertices from {1, … , 𝑘}:

• Case 1: The shortest path does not use vertex 𝑘
as an intermediate vertex. In this case, the
shortest path is the same as the shortest path
using only intermediate vertices from {1, … , 𝑘 −
1}. Its length is 𝑑𝑖𝑠𝑡(𝑖, 𝑗, 𝑘 − 1).

Data Structures and Programming
Techniques

49

Dynamic Programming (cont’d)

• Case 2: The shortest path does use vertex k as an intermediate vertex. Since we
are looking for the shortest path, this path must consist of a shortest path from 𝑖
to 𝑘 (using intermediates from {1, … , 𝑘 − 1}) followed by a shortest path from 𝑘 to
𝑗 (also using intermediates from {1, … , 𝑘 − 1}). Its length is 𝑑𝑖𝑠𝑡(𝑖, 𝑘, 𝑘 − 1) +
 𝑑𝑖𝑠𝑡(𝑘, 𝑗, 𝑘 − 1).

• Therefore, the shortest path 𝑑𝑖𝑠𝑡(𝑖, 𝑗, 𝑘) is the minimum of these two cases:
 𝑑𝑖𝑠𝑡 𝑖, 𝑗, 𝑘 = min(𝑑𝑖𝑠𝑡(𝑖, 𝑗, 𝑘 − 1), 𝑑𝑖𝑠𝑡(𝑖, 𝑘, 𝑘 − 1) + 𝑑𝑖𝑠𝑡(𝑘, 𝑗, 𝑘 − 1))

• This is exactly what we showed earlier with matrix 𝐴.

• This recurrence relation clearly shows the optimal substructure: the optimal
solution for the problem with intermediate vertices up to 𝑘 is built directly from
the optimal solutions for the smaller subproblems involving intermediate vertices
up to 𝑘 − 1.

Data Structures and Programming
Techniques

50

Dynamic Programming (cont’d)

• The second key characteristic is overlapping subproblems: when computing the
shortest paths, the algorithm repeatedly needs the solutions to the same
subproblems.

• For example, calculating 𝑑𝑖𝑠𝑡(𝑖, 𝑗, 𝑘) requires 𝑑𝑖𝑠𝑡(𝑖, 𝑗, 𝑘 − 1), 𝑑𝑖𝑠𝑡(𝑖, 𝑘, 𝑘 −
1), and 𝑑𝑖𝑠𝑡(𝑘, 𝑗, 𝑘 − 1).

• When calculating 𝑑𝑖𝑠𝑡(𝑥, 𝑦, 𝑘) for another pair (𝑥, 𝑦), it might again need
𝑑𝑖𝑠𝑡(𝑖, 𝑗, 𝑘 − 1) or other subproblems that were already computed or needed for
the (𝑖, 𝑗) calculation.

• Instead of recomputing these shortest paths using intermediates {1, … , 𝑘 −
1} every time they are needed, Floyd’s algorithm uses tabulation (a bottom-up
approach). It maintains the matrix 𝐴 representing the shortest paths found so far.
In iteration 𝑘, it uses the values computed in iteration 𝑘 − 1 (which are stored in
the matrix) to compute the values for iteration 𝑘, updating the matrix in place.
This storage and reuse of solutions to subproblems is the hallmark of addressing
overlapping subproblems.

Data Structures and Programming
Techniques

51

Dynamic Programming (cont’d)

• In summary, Floyd's algorithm systematically builds up the
solution for all-pairs shortest paths.

• It defines subproblems based on the set of allowed
intermediate vertices ({1, … , 𝑘}).

• It solves larger problems (𝒌) by combining solutions to
smaller, overlapping subproblems (𝒌 − 𝟏) using a
recurrence relation (𝑑𝑖𝑠𝑡(𝑖, 𝑗, 𝑘) = min(…)).

• It stores the solutions to these subproblems (implicitly in
the distance matrix) to avoid redundant computations.

• These characteristics—optimal substructure and
overlapping subproblems solved via tabulation—are
precisely what define an algorithm as dynamic
programming.

Data Structures and Programming
Techniques

52

Floyd’s Algorithm (cont’d)

void APSP(void)

{

 int i,j,k;

 int A[MAX][MAX], C[MAX][MAX];

 for (i=0; i<=MAX-1; i++)

 for (j=0; j<=MAX-1; j++)

 A[i][j]=C[i][j];

 for (k=0; k<=MAX-1; k++)

 for (i=0; i<=MAX-1; i++)

 for (j=0; j<=MAX-1; j++)

 if (A[i][k]+A[k][j] < A[i][j])

 A[i][j]=A[i][k]+A[k][j];

}

Data Structures and Programming
Techniques

53

Time Complexity

• The running time of Floyd’s algorithm is
𝑶(𝒏𝟑) where 𝑛 is the number of vertices.

Data Structures and Programming
Techniques

54

Existence of Paths

• In some problems we may be interested in
determining only whether there exists a path
of length one or more from vertex 𝑖 to vertex 𝑗
of directed graph 𝐺 (the weights are not
considered or weights do not exist).

• The algorithm for this problem is a
modification of Floyd’s algorithm, which
historically predates Floyd’s algorithm, called
Warshall’s algorithm.

Data Structures and Programming
Techniques

55

Existence of Paths (cont’d)

• Suppose our weight matrix 𝐶 is just the
adjacency matrix of graph 𝐺. That is, 𝐶 𝑖, 𝑗 =
1 if there is an edge from 𝑖 to 𝑗, and 0
otherwise.

• We wish to compute the matrix 𝐴 such that
𝐴 𝑖, 𝑗 = 1 if there is a path of length one or
more from 𝑖 to 𝑗, and 0 otherwise.

• 𝐴 is the transitive closure (μεταβατική
κλειστότητα) of the adjacency matrix.

Data Structures and Programming
Techniques

56

Transitive Closure

• The transitive closure can be computed using a
procedure similar to the one we used for the all-pairs
shortest path problem.

• We apply the following formula in the 𝑘-th pass over
the Boolean matrix 𝐴:

𝐴𝑘 𝑖, 𝑗 = 𝐴𝑘−1 𝑖, 𝑗 𝒐𝒓 (𝐴𝑘−1 𝑖, 𝑘 𝒂𝒏𝒅 𝐴𝑘−1 𝑘, 𝑗)

• The formula states that there is a path from 𝑖 to 𝑗 not
passing through a vertex numbered higher than 𝑘 if
– there is already a path from 𝑖 to 𝑗 not passing through a

vertex number higher than 𝑘 − 1 or
– there is a path from 𝑖 to 𝑘 not passing through a vertex

numbered higher than 𝑘 − 1 and a path from 𝑘 to 𝑗 not
passing through a vertex numbered higher than 𝑘 − 1.

Data Structures and Programming
Techniques

57

Transitive Closure (cont’d)

void TransitiveClosure(void)

{

 int i,j,k;

 int A[MAX][MAX], C[MAX][MAX];

 for (i=0; i<=MAX-1; i++)

 for (j=0; j<=MAX-1; j++)

 A[i][j]=C[i][j];

 for (k=0; k<=MAX-1; k++)

 for (i=0; i<=MAX-1; i++)

 for (j=0; j<=MAX-1; j++)

 if (!A[i][j])

 A[i][j]=A[i][k] && A[k][j];

}

Data Structures and Programming
Techniques

58

Time Complexity

• The running time of Warshall’s algorithm is
𝑶(𝒏𝟑) where 𝑛 is the number of vertices.

Data Structures and Programming
Techniques

59

Note

• Because of the similarity of the two algorithms
we just presented (Floyd’s and Warshall’s),
Floyd’s algorithm is often referred to as Floyd-
Warshall algorithm.

Data Structures and Programming
Techniques

60

Readings

• T. A. Standish. Data Structures , Algorithms
and Software Principles in C.
– Chapter 10

• A. V. Aho, J. E. Hopcroft and J. D. Ullman. Data
Structures and Algorithms.
– Chapters 6 and 7

• T. H Cormen, C. E. Leiserson and R.L. Rivest.
Introduction to Algorithms.
– Chapters 25 and 26.

Data Structures and Programming
Techniques

61

	Slide 1: Weighted Graphs (Γράφοι με Βάρη)
	Slide 2: Weighted Graphs
	Slide 3: Representations of Weighted Graphs
	Slide 4: Example Weighted Directed Graph
	Slide 5: Adjacency Matrix for the Example Graph
	Slide 6: Representations of Weighted Graphs (cont’d)
	Slide 7: Example Weighted Directed Graph
	Slide 8: Adjacency List Representation for the Example Graph
	Slide 9: Directed Weighted Graphs
	Slide 10: Shortest Paths (Συντομότερα Μονοπάτια)
	Slide 11: The Shortest Path from Vertex 1 to Vertex 5
	Slide 12: The Single Source Shortest Paths Problem
	Slide 13: Greedy Algorithms
	Slide 14: Dijkstra’s Greedy Algorithm for the Single Source Shortest Paths Problem
	Slide 15: Dijkstra’s Algorithm (cont’d)
	Slide 16: Dijkstra’s Algorithm (cont’d)
	Slide 17: Example Graph
	Slide 18: Expanding the Vertex Set W in Stages
	Slide 19: Expanding the Vertex Set W in Stages (cont’d)
	Slide 20: Expanding the Vertex Set W in Stages (cont’d)
	Slide 21: Expanding the Vertex Set W in Stages (cont’d)
	Slide 22: Expanding the Vertex Set W in Stages (cont’d)
	Slide 23: Expanding the Vertex Set W in Stages (cont’d)
	Slide 24: Expanding the Vertex Set W in Stages (cont’d)
	Slide 25: Expanding the Vertex Set W in Stages (cont’d)
	Slide 26: Expanding the Vertex Set W in Stages (cont’d)
	Slide 27: Expanding the Vertex Set W in Stages (cont’d)
	Slide 28: Expanding the Vertex Set W in Stages (cont’d)
	Slide 29: Dijkstra’s Algorithm in Pseudocode
	Slide 30: Dijkstra’s Algorithm (cont’d)
	Slide 31: Proof of Correctness for Dijkstra’s Algorithm
	Slide 32: Proof (cont’d)
	Slide 33: Hypothetical Shorter Path to w
	Slide 34: Proof (cont’d)
	Slide 35: Proof (cont’d)
	Slide 36: Proof (cont’d)
	Slide 37: Impossible Shortest Path
	Slide 38: Proof (cont’d)
	Slide 39: Time Complexity
	Slide 40: Time Complexity (cont’d)
	Slide 41: Time Complexity (cont’d)
	Slide 42: The All-Pairs Shortest Path Problem
	Slide 43: The All-Pairs Shortest Path Problem (cont’d)
	Slide 44: Floyd’s Algorithm
	Slide 45: Floyd’s Algorithm (cont’d)
	Slide 46: The k-th Iteration Graphically
	Slide 47: Dynamic Programming
	Slide 48: Dynamic Programming (cont’d)
	Slide 49: Dynamic Programming (cont’d)
	Slide 50: Dynamic Programming (cont’d)
	Slide 51: Dynamic Programming (cont’d)
	Slide 52: Dynamic Programming (cont’d)
	Slide 53: Floyd’s Algorithm (cont’d)
	Slide 54: Time Complexity
	Slide 55: Existence of Paths
	Slide 56: Existence of Paths (cont’d)
	Slide 57: Transitive Closure
	Slide 58: Transitive Closure (cont’d)
	Slide 59: Time Complexity
	Slide 60: Note
	Slide 61: Readings

