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Weighted Graphs

• Weighted graphs are directed or undirected 
graphs in which numbers called weights are 
attached to the edges.

• Example: Let the vertices of a graph represent 
cities on a map. The weight on an edge 
connecting city A to city B can be the travel 
distance from A to B, the cost of an airline ticket 
to go from A to B, or the time required to travel 
from A to B.
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Representations of Weighted Graphs

• To represent a weighted graph 𝐺, we can use 
an adjacency matrix 𝑇 in which:
–  𝑇 𝑖, 𝑗 = 𝑤𝑖𝑗 if there exists an edge 𝑒 = (𝑣𝑖 , 𝑣𝑗) of 

weight 𝑤𝑖𝑗 .

– 𝑇 𝑖, 𝑖 = 0

– 𝑇 𝑖, 𝑗 = ∞ if there is no edge from 𝑣𝑖 to 𝑣𝑗  .

• We will assume that all weights 𝑤𝑖𝑗 are non-negative 
numbers.
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Example Weighted Directed Graph
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Adjacency Matrix for the Example 
Graph

1 2 3 4 5 6

1 0 3 ∞ ∞ ∞ 5

2 ∞ 0 7 ∞ ∞ 10

3 ∞ ∞ 0 5 1 ∞

4 ∞ ∞ ∞ 0 6 ∞

5 ∞ ∞ ∞ ∞ 0 7

6 ∞ ∞ 8 2 ∞ 0
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Representations of Weighted Graphs 
(cont’d)

• We can easily extend the adjacency list 
representation to be used for weighted graphs 
too.

• If (𝑣𝑖 , 𝑣𝑗) is an edge in the graph with weight 

𝑤𝑖𝑗  then the adjacency list of 𝑣𝑖  will contain 

the pair (𝑣𝑗 , 𝑤𝑖𝑗).
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Example Weighted Directed Graph
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Adjacency List Representation for the 
Example Graph

Vertices Adjacency List

1 (2,3) (6,5)

2 (3,7) (6,10)

3 (4,5) (5,1)

4 (5,6)

5 (6,7)

6 (3,8) (4,2)
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Directed Weighted Graphs

• We will consider only directed weighted 
graphs in this lecture.
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Shortest Paths (Συντομότερα 
Μονοπάτια)

• The length (or weight) of a path 𝑝 is the sum of 
the weights of the edges of 𝑝.

• A very interesting problem in a directed weighted 
graph is to find the shortest path from a vertex 𝑠 
to a vertex 𝑡.

• A shortest path (συντομότερο μονοπάτι) 
between two vertices 𝑠 and 𝑡 in a weighted 
directed graph is a directed simple path from 𝑠 to 
𝑡 with the property that no other path has a 
lower length. 
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The Shortest Path from Vertex 1 to 
Vertex 5
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The Single Source Shortest Paths 
Problem

• Let 𝐺 = (𝑉, 𝐸) be a weighted directed graph 
in which each edge has a non-negative weight, 
and one vertex is specified as the source 
(αφετηρία).

• The single source shortest paths problem (το 
πρόβλημα των συντομότερων μονοπατιών 
κοινής αφετηρίας) is to determine the length 
of the shortest path from the source to each 
vertex in 𝑉.
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Greedy Algorithms

• Algorithms for optimization problems (προβλήματα 
βελτιστοποίησης) typically go through a sequence of 
steps, with a set of choices at each step.

• The single source shortest path problem presented 
earlier is an optimization problem.

• A greedy (άπληστος) algorithm always makes the 
choice that looks best at the moment. That is, it makes 
a locally optimal choice in the hope that this choice will 
lead to a globally optimal solution.

• Greedy algorithms do not always yield optimal 
solutions, but for many problems they do.
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Dijkstra’s Greedy Algorithm for the 
Single Source Shortest Paths Problem
• Let 𝐺 = (𝑉, 𝐸) our graph.
• We start with a vertex set 𝑊 = {𝑠} 
    containing only the source.
• We will progressively enlarge 𝑊 by adding one 

new vertex at a time, until 𝑊 includes all vertices 
of 𝑉.

• The vertex we add at each stage is the vertex 𝑤 in 
𝑉 − 𝑊, which is at a minimum distance from the 
source among all vertices in 𝑉 − 𝑊 that have not 
been added to 𝑊 (this is a greedy choice).
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Dijkstra’s Algorithm (cont’d)

• We keep track of the minimum distance from the 
source 𝒔 at each stage by using an array 
𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑢 = Δ 𝑢  which keeps track 
of the shortest distance from 𝑠 to each vertex 𝑢 
in 𝑊. 

• The same array also keeps track of the shortest 
distance from 𝒔 to each vertex 𝒖 in 𝑽 − 𝑾 using 
a path 𝑝 starting at 𝑠, such that all vertices of 
path 𝑝 lie in 𝑊, except the last vertex 𝑢 which lies 
outside 𝑊.
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Dijkstra’s Algorithm (cont’d)

• Every time we add a new vertex 𝑤 to 𝑊, we 
update the array 𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑢  for all 𝑢 
in 𝑉 − 𝑊.

• This distance is updated in case it is currently 
bigger than the length of the path from the 
source to 𝑢 going through 𝑤 which is 
𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑤 + 𝑇[𝑤, 𝑢]. This operation 
is called edge relaxation (χαλάρωση ακμής) for 
the edge (𝑤, 𝑢).

• The term relaxation is historical. In fact, what we 
do here is “tightening”.
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Example Graph

• We will show how Dijkstra’s algorithm works on 
this graph with source vertex 1.
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Expanding the Vertex Set W in Stages

Stage W V-W w Δ(w) Δ(1) Δ(2) Δ(3) Δ(4) Δ(5) Δ(6)

Start {1} {2,3,4,5,6} - - 0 3 ∞ ∞ ∞ 5
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Expanding the Vertex Set W in Stages 
(cont’d)

Stage W V-W w Δ(w) Δ(1) Δ(2) Δ(3) Δ(4) Δ(5) Δ(6)

Start {1} {2,3,4,5,6} - - 0 3 ∞ ∞ ∞ 5
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Expanding the Vertex Set W in Stages 
(cont’d)

Stage W V-W w Δ(w) Δ(1) Δ(2) Δ(3) Δ(4) Δ(5) Δ(6)

Start {1} {2,3,4,5,6} - - 0 3 ∞ ∞ ∞ 5

2 {1,2} {3,4,5,6} 2 3 0 3 10 ∞ ∞ 5
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Expanding the Vertex Set W in Stages 
(cont’d)

Stage W V-W w Δ(w) Δ(1) Δ(2) Δ(3) Δ(4) Δ(5) Δ(6)

Start {1} {2,3,4,5,6} - - 0 3 ∞ ∞ ∞ 5

2 {1,2} {3,4,5,6} 2 3 0 3 10 ∞ ∞ 5

Data Structures and Programming 
Techniques

21

w=6 is chosen for the third stage.

2

1

6
5

4

3

10

3

7

5

6

7

2

8
1

5



Expanding the Vertex Set W in Stages 
(cont’d)

Stage W V-W w Δ(w) Δ(1) Δ(2) Δ(3) Δ(4) Δ(5) Δ(6)

Start {1} {2,3,4,5,6} - - 0 3 ∞ ∞ ∞ 5

2 {1,2} {3,4,5,6} 2 3 0 3 10 ∞ ∞ 5

3 {1,2,6} {3,4,5} 6 5 0 3 10 7 ∞ 5
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Expanding the Vertex Set W in Stages 
(cont’d)

Stage W V-W w Δ(w) Δ(1) Δ(2) Δ(3) Δ(4) Δ(5) Δ(6)

Start {1} {2,3,4,5,6} - - 0 3 ∞ ∞ ∞ 5

2 {1,2} {3,4,5,6} 2 3 0 3 10 ∞ ∞ 5

3 {1,2,6} {3,4,5} 6 5 0 3 10 7 ∞ 5
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Expanding the Vertex Set W in Stages 
(cont’d)

Stage W V-W w Δ(w) Δ(1) Δ(2) Δ(3) Δ(4) Δ(5) Δ(6)

Start {1} {2,3,4,5,6} - - 0 3 ∞ ∞ ∞ 5

2 {1,2} {3,4,5,6} 2 3 0 3 10 ∞ ∞ 5

3 {1,2,6} {3,4,5} 6 5 0 3 10 7 ∞ 5

4 {1,2,6,4} {3,5} 4 7 0 3 10 7 13 5
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Expanding the Vertex Set W in Stages 
(cont’d)

Stage W V-W w Δ(w) Δ(1) Δ(2) Δ(3) Δ(4) Δ(5) Δ(6)

Start {1} {2,3,4,5,6} - - 0 3 ∞ ∞ ∞ 5

2 {1,2} {3,4,5,6} 2 3 0 3 10 ∞ ∞ 5

3 {1,2,6} {3,4,5} 6 5 0 3 10 7 ∞ 5

4 {1,2,6,4} {3,5} 4 7 0 3 10 7 13 5
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Expanding the Vertex Set W in Stages 
(cont’d)

Stage W V-W w Δ(w) Δ(1) Δ(2) Δ(3) Δ(4) Δ(5) Δ(6)

Start {1} {2,3,4,5,6} - - 0 3 ∞ ∞ ∞ 5

2 {1,2} {3,4,5,6} 2 3 0 3 10 ∞ ∞ 5

3 {1,2,6} {3,4,5} 6 5 0 3 10 7 ∞ 5

4 {1,2,6,4} {3,5} 4 7 0 3 10 7 13 5

5 {1,2,6,4,3} {5} 3 10 0 3 10 7 11 5
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Expanding the Vertex Set W in Stages 
(cont’d)

Stage W V-W w Δ(w) Δ(1) Δ(2) Δ(3) Δ(4) Δ(5) Δ(6)

Start {1} {2,3,4,5,6} - - 0 3 ∞ ∞ ∞ 5

2 {1,2} {3,4,5,6} 2 3 0 3 10 ∞ ∞ 5

3 {1,2,6} {3,4,5} 6 5 0 3 10 7 ∞ 5

4 {1,2,6,4} {3,5} 4 7 0 3 10 7 13 5

5 {1,2,6,4,3} {5} 3 10 0 3 10 7 11 5
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Expanding the Vertex Set W in Stages 
(cont’d)

Stage W V-W w Δ(w) Δ(1) Δ(2) Δ(3) Δ(4) Δ(5) Δ(6)

Start {1} {2,3,4,5,6} - - 0 3 ∞ ∞ ∞ 5

2 {1,2} {3,4,5,6} 2 3 0 3 10 ∞ ∞ 5

3 {1,2,6} {3,4,5} 6 5 0 3 10 7 ∞ 5

4 {1,2,6,4} {3,5} 4 7 0 3 10 7 13 5

5 {1,2,6,4,3} {5} 3 10 0 3 10 7 11 5

6 {1,2,6,4,3,5} {} 5 11 0 3 10 7 11 5
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Dijkstra’s Algorithm in Pseudocode

void ShortestPath(void)

{

  Let T be the adjacency matrix of graph G.

  Let MinDistance be a variable that takes edge

  weights as values.

  Let Minimum(x,y) be a function whose value is the lesser 

  of x and y.

  /* Let s in V be the source vertex at which the 

     shortest paths starts. */

  /* Initialize W and ShortestDistance[u] as follows: */

  W={s};

  ShortestDistance[s]=0;

  for (each u in V-{s}) ShortestDistance[u]=T[s][u];
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Dijkstra’s Algorithm (cont’d)

/*Now repeatedly enlarge W until W includes all vertices in V */

  while (W!=V){

    /* find the vertex w in V-W at the minimum distance from s */

    MinDistance=∞;
    for (each v in V-W){

      if (ShortestDistance[v] < MinDistance){

        MinDistance=ShortestDistance[v];

        w=v;

      }

    }

   

    /* add w to W */

    W=W ∪ {w};
    

   /* relaxation step: update the shortest distance to vertices in V-W */

    for (each u in V-W){

      ShortestDistance[u]=Minimum(ShortestDistance[u],

                                  ShortestDistance[w]+T[w][u]);

    }

  }

}
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Proof of Correctness for Dijkstra’s 
Algorithm

• We will first prove that at each stage of the 
algorithm, when 𝑤 is selected, 
𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒[𝑤] gives us the length of 
the shortest path from the source to 𝑤.
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Proof (cont’d)

• Let us assume that this is not the case i.e., 
𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒[𝑤] is not the length of the 
shortest path from 𝑠 to 𝑤.

• Then, there must exist some shorter path 𝑝, 
which starts at 𝑠 and contains a vertex in 𝑉 − 𝑊 
other than 𝑤.

• We can start at the source 𝑠 and proceed along 
path 𝑝, passing through vertices in 𝑊, until we 
come to the first vertex 𝑟, that is not in 𝑊 as the 
next figure shows.
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Hypothetical Shorter Path to 𝑤
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Proof (cont’d)

• Now notice that the length of the initial portion of the path 𝑝 from 
𝑠 to  𝑟 is shorter than the length of the entire path  𝑝 from 𝑠 to 𝑤.

• Since we assumed that the length of path 𝑝 was shorter than 
𝑆ℎ𝑜𝑟𝑡𝑒𝑟𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒[𝑤], the length of the path from 𝑠 to 𝑟 is shorter 
than 𝑆ℎ𝑜𝑟𝑡𝑒𝑟𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑤  also.

• Moreover, the path from 𝑠 to 𝑟  has all its vertices except for 𝑟 lying 
in 𝑊.

• Thus we would have 𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑟 <
𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑤  when 𝑤 was chosen as the next vertex to 
add to 𝑊.

• But this contradicts the choice of 𝑤 and would have meant that we 
would have chosen 𝑟 instead.

• Since we reached a contradiction, 𝑆ℎ𝑜𝑟𝑡𝑒𝑟𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑤  is the 
length of the shortest path from 𝑠 to 𝑤. 
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Proof (cont’d)

• We will now prove that, at each stage, after 𝑊 
is enlarged by the addition of 𝑤 and shortest 
distances updated, 𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒[𝑢] 
gives the distance of the shortest path from 𝑠 
to every vertex 𝑢 in 𝑉 − 𝑊 via intermediaries 
lying wholly in 𝑊.
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Proof (cont’d)

• Observe that when we add a new vertex 𝑤 to 𝑊, we 
adjust the shortest distances to take into account of 
the possibility that there is now a shorter path to 𝑢 
going through 𝑤.

• If that path goes through the old 𝑊 to 𝑤 and then 
immediately to 𝑢, its length will be compared with 
𝑆ℎ𝑜𝑟𝑡𝑒𝑟𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑢  and 𝑆ℎ𝑜𝑟𝑡𝑒𝑟𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑢  will be 
reduced if the new path is shorter.

• The only other possibility for a shorter path is shown 
on the next slide where the path travels to 𝑤, then 
back into the old 𝑊, to some member 𝑥 of the old 𝑊, 
then to 𝑢.
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Impossible Shortest Path
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Proof (cont’d)

• But there really cannot be such a path. Since 𝑥 was 
placed in 𝑊 before 𝑤, the shortest of all paths from 
the source to 𝑥 runs through the old 𝑊 alone. 

• Therefore, the path to 𝑥 through 𝑤  shown on the 
figure is no shorter than the path directly to 𝑥 through 
𝑊. 

• As a result, the length of the path from the source to 
𝑤, 𝑥 and 𝑢 is no less from the old value of 
𝑆ℎ𝑜𝑟𝑡𝑒𝑟𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑢 . 

• Thus, 𝑆ℎ𝑜𝑟𝑡𝑒𝑟𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑢  cannot be reduced by the 
algorithm due to a path through 𝑤 and 𝑥, and we need 
not consider the length of such paths.
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Time Complexity

• If we use an adjacency matrix to represent the 
digraph, Dijkstra’s algorithm runs in 𝑶(𝒏𝟐) time 
where 𝑛 is the number of vertices of the graph.

• The initialization stage runs through 𝑛 − 1 
vertices and takes time 𝑂 𝑛 .

• The while-loop runs through the 𝑛 − 1 vertices of 
𝑉 − {𝑠} one at a time, and for each such vertex, 
the selection of the new vertex at minimum 
distance, as well as the updating of the distances 
takes time proportional to the number of vertices 
in 𝑉 − 𝑊. Therefore, the loop takes 𝑂(𝑛2) time.
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Time Complexity (cont’d)

• If the number of edges in the graph 𝒆 is much less than 
𝒏𝟐 e.g. 𝑶 𝒏 (i.e., the graph is sparse) it is better to 
use the adjacency list representation of the graph and 
a priority queue to organize the vertices in 𝑉 − 𝑊 
according to the values of array 𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒.

• Then, the updating of the array 𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 can 
be done by going down the adjacency list of 𝑤 and 
updating the distances in the priority queue. A total of 
𝑒 updates will be made, each at cost 𝑂(log 𝑛) if the 
priority queue is implemented as a min heap, so the 
total time for updates is 𝑂(𝑒 log 𝑛). 
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Time Complexity (cont’d)

• The time to initialize the priority queue is 
𝑂 𝑛 .

• The time needed to select 𝑤 is 𝑂 log 𝑛  since 
it involves finding and removing the minimum 
element  in a heap.

• Thus, the total time of the algorithm is 𝑶(𝒏 +
𝒆 log 𝒏) which is considerably better than 
𝑂(𝑛2) for sparse graphs.
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The All-Pairs Shortest Path Problem

• Suppose we have a weighted digraph that gives the 
flying time on certain routes containing cities, and 
we wish to construct a table that gives the shortest 
time required to fly from any one city to any other.

• This is an instance of the all-pairs shortest path 
problem.
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The All-Pairs Shortest Path Problem 
(cont’d)

• More formally, let 𝐺 = (𝑉, 𝐸) be a weighted 
directed graph in which each edge (𝑣, 𝑤) has a 
non-negative weight 𝐶[𝑣, 𝑤]. The all-pairs 
shortest path problem is to find for each pair of 
vertices 𝑣, 𝑤, the shortest path from 𝑣 to 𝑤.

• We could solve this problem by running Dijkstra’s 
algorithm with each vertex in turn as a source.

• We will present a more direct way of solving the 
problem due to R. W. Floyd.
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Floyd’s Algorithm

• Let us assume that vertices in 𝑉 are numbered 
with 0, 1, 2, … , 𝑛 − 1. The algorithm uses an 
𝑛 × 𝑛 matrix 𝐴 in which to compute the 
lengths of the shortest paths.

• We initially set 𝐴 𝑖, 𝑗 = 𝐶[𝑖, 𝑗] where 𝐶 is the 
adjacency matrix of 𝐺.

• As a result, if there is no edge from 𝑖 to 𝑗, we 
have 𝐴 𝑖, 𝑗 = ∞.

• Also, each diagonal element of 𝐴 is 0.
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Floyd’s Algorithm (cont’d)

• The algorithm makes 𝑛 iterations over the matrix 
𝐴.

• After the 𝒌-th iteration, 𝐴[𝑖, 𝑗] will have as value 
the smallest length of any path from vertex 𝑖 to 
vertex 𝑗 that does not pass through a vertex 
numbered higher than 𝑘.

• In the 𝑘-th iteration, we use the following 
formulas to compute 𝐴:

𝐴𝑘 𝑖, 𝑗 = 𝑚𝑖𝑛 ቊ
𝐴𝑘−1[𝑖, 𝑗]

𝐴𝑘−1 𝑖, 𝑘 + 𝐴𝑘−1[𝑘, 𝑗]
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The 𝑘-th Iteration Graphically
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Dynamic Programming

• Dynamic programming solves problems by 
breaking them down into simpler, overlapping 
subproblems, solving each subproblem just 
once, and storing their solutions. 

• The  optimal solution to the main problem is 
then constructed from the optimal solutions 
of these subproblems. 

• Floyd’s algorithm is a dynamic programming 
algorithm. Why?
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Dynamic Programming (cont’d)

• Floyd-Warshall exhibits the two key characteristics of dynamic 
programming.

• The first one is optimal substructure: The problem of finding the 
shortest path between any pair of vertices (𝑖, 𝑗) has optimal 
substructure. The Floyd algorithm leverages this by considering 
increasingly larger sets of intermediate vertices allowed on the 
path.

• Let us explain this.

• Let 𝑑𝑖𝑠𝑡(𝑖, 𝑗, 𝑘) be the length of the shortest path from vertex 𝑖 to 
vertex 𝑗 such that all intermediate vertices on the path (vertices 
other than 𝑖 and 𝑗 themselves) are from the set {1, 2, … , 𝑘}.
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Dynamic Programming (cont’d)

• The algorithm builds the solution iteratively. To 
find 𝑑𝑖𝑠𝑡(𝑖, 𝑗, 𝑘), it considers two possibilities for 
the shortest path from 𝑖 to 𝑗 using only 
intermediate vertices from {1, … , 𝑘}:

• Case 1: The shortest path does not use vertex 𝑘 
as an intermediate vertex. In this case, the 
shortest path is the same as the shortest path 
using only intermediate vertices from {1, … , 𝑘 −
1}. Its length is 𝑑𝑖𝑠𝑡(𝑖, 𝑗, 𝑘 − 1).
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Dynamic Programming (cont’d)

• Case 2: The shortest path does use vertex k as an intermediate vertex. Since we 
are looking for the shortest path, this path must consist of a shortest path from 𝑖 
to 𝑘 (using intermediates from {1, … , 𝑘 − 1}) followed by a shortest path from 𝑘 to 
𝑗 (also using intermediates from {1, … , 𝑘 − 1} ). Its length is 𝑑𝑖𝑠𝑡(𝑖, 𝑘, 𝑘 − 1)  +
 𝑑𝑖𝑠𝑡(𝑘, 𝑗, 𝑘 − 1).

• Therefore, the shortest path 𝑑𝑖𝑠𝑡(𝑖, 𝑗, 𝑘) is the minimum of these two cases: 
 𝑑𝑖𝑠𝑡 𝑖, 𝑗, 𝑘 = min( 𝑑𝑖𝑠𝑡(𝑖, 𝑗, 𝑘 − 1), 𝑑𝑖𝑠𝑡(𝑖, 𝑘, 𝑘 − 1)  +  𝑑𝑖𝑠𝑡(𝑘, 𝑗, 𝑘 − 1) )

• This is exactly what we showed earlier with matrix 𝐴.

• This recurrence relation clearly shows the optimal substructure: the optimal 
solution for the problem with intermediate vertices up to 𝑘 is built directly from 
the optimal solutions for the smaller subproblems involving intermediate vertices 
up to 𝑘 − 1.
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Dynamic Programming (cont’d)

• The second key characteristic is overlapping subproblems: when computing the 
shortest paths, the algorithm repeatedly needs the solutions to the same 
subproblems.

• For example, calculating 𝑑𝑖𝑠𝑡(𝑖, 𝑗, 𝑘) requires 𝑑𝑖𝑠𝑡(𝑖, 𝑗, 𝑘 − 1), 𝑑𝑖𝑠𝑡(𝑖, 𝑘, 𝑘 −
1), and 𝑑𝑖𝑠𝑡(𝑘, 𝑗, 𝑘 − 1).

• When calculating 𝑑𝑖𝑠𝑡(𝑥, 𝑦, 𝑘) for another pair (𝑥, 𝑦), it might again need 
𝑑𝑖𝑠𝑡(𝑖, 𝑗, 𝑘 − 1) or other subproblems that were already computed or needed for 
the (𝑖, 𝑗) calculation.

• Instead of recomputing these shortest paths using intermediates {1, … , 𝑘 −
1} every time they are needed, Floyd’s algorithm uses tabulation (a bottom-up 
approach). It maintains the matrix 𝐴 representing the shortest paths found so far. 
In iteration 𝑘, it uses the values computed in iteration 𝑘 − 1 (which are stored in 
the matrix) to compute the values for iteration 𝑘, updating the matrix in place. 
This storage and reuse of solutions to subproblems is the hallmark of addressing 
overlapping subproblems.
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Dynamic Programming (cont’d)

• In summary, Floyd's algorithm systematically builds up the 
solution for all-pairs shortest paths. 

• It defines subproblems based on the set of allowed 
intermediate vertices ({1, … , 𝑘}). 

• It solves larger problems (𝒌) by combining solutions to 
smaller, overlapping subproblems (𝒌 − 𝟏) using a 
recurrence relation (𝑑𝑖𝑠𝑡(𝑖, 𝑗, 𝑘)  =  min(… )). 

• It stores the solutions to these subproblems (implicitly in 
the distance matrix) to avoid redundant computations.

• These characteristics—optimal substructure and 
overlapping subproblems solved via tabulation—are 
precisely what define an algorithm as dynamic 
programming.
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Floyd’s Algorithm (cont’d)

void APSP(void)

{ 

  int i,j,k;

  int A[MAX][MAX], C[MAX][MAX];

  

  for (i=0; i<=MAX-1; i++)

    for (j=0; j<=MAX-1; j++)

       A[i][j]=C[i][j];

  

  for (k=0; k<=MAX-1; k++)

    for (i=0; i<=MAX-1; i++)

       for (j=0; j<=MAX-1; j++)

          if (A[i][k]+A[k][j] < A[i][j])

             A[i][j]=A[i][k]+A[k][j];

} 
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Time Complexity

• The running time of Floyd’s algorithm is 
𝑶(𝒏𝟑) where 𝑛 is the number of vertices.
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Existence of Paths

• In some problems we may be interested in 
determining only whether there exists a path 
of length one or more from vertex 𝑖 to vertex 𝑗 
of directed graph 𝐺 (the weights are not 
considered or weights do not exist).

• The algorithm for this problem is a 
modification of Floyd’s algorithm, which 
historically predates Floyd’s algorithm, called 
Warshall’s algorithm.
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Existence of Paths (cont’d)

• Suppose our weight matrix 𝐶 is just the 
adjacency matrix of graph 𝐺. That is,  𝐶 𝑖, 𝑗 =
1 if there is an edge from 𝑖  to 𝑗, and 0 
otherwise.

• We wish to compute the matrix 𝐴 such that 
𝐴 𝑖, 𝑗 = 1 if there is a path of length one or 
more from 𝑖  to 𝑗, and 0 otherwise.

• 𝐴 is the transitive closure (μεταβατική 
κλειστότητα) of the adjacency matrix.
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Transitive Closure

• The transitive closure can be computed using a 
procedure similar to the one we used for the all-pairs 
shortest path problem.

• We apply the following formula in the 𝑘-th pass over 
the Boolean matrix 𝐴:

𝐴𝑘 𝑖, 𝑗 =  𝐴𝑘−1 𝑖, 𝑗  𝒐𝒓 (𝐴𝑘−1 𝑖, 𝑘  𝒂𝒏𝒅 𝐴𝑘−1 𝑘, 𝑗 ) 

• The formula states that there is a path from 𝑖 to 𝑗 not 
passing through a vertex numbered higher than 𝑘 if
– there is already a path from 𝑖 to 𝑗 not passing through a 

vertex number higher than 𝑘 − 1 or
– there is a path from 𝑖 to 𝑘 not passing through a vertex 

numbered higher than 𝑘 − 1 and a path from 𝑘 to 𝑗 not 
passing through a vertex numbered higher than 𝑘 − 1.
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Transitive Closure (cont’d)

void TransitiveClosure(void)

{ 

  int i,j,k;

  int A[MAX][MAX], C[MAX][MAX];

  

  for (i=0; i<=MAX-1; i++)

    for (j=0; j<=MAX-1; j++)

       A[i][j]=C[i][j];

  

  for (k=0; k<=MAX-1; k++)

    for (i=0; i<=MAX-1; i++)

       for (j=0; j<=MAX-1; j++)

          if (!A[i][j])

             A[i][j]=A[i][k] && A[k][j];

} 
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Time Complexity

• The running time of Warshall’s algorithm is 
𝑶(𝒏𝟑) where 𝑛 is the number of vertices.
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Note

• Because of the similarity of the two algorithms 
we just presented (Floyd’s and Warshall’s), 
Floyd’s algorithm is often referred to as Floyd-
Warshall algorithm.
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Readings

• T. A. Standish. Data Structures , Algorithms 
and Software Principles in C.
– Chapter 10

• A. V. Aho, J. E. Hopcroft and J. D. Ullman. Data 
Structures and Algorithms. 
– Chapters 6 and 7

• T. H Cormen, C. E. Leiserson and R.L. Rivest. 
Introduction to Algorithms.
– Chapters 25 and 26.
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